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Abstract

These notes are about one of the most fashionable, yet misinterpreted words in science: information. The
purpose is to introduce Information Theory, the mathematical framework that allows us to unambiguously define
and deal with information. We describe the two of the main quantities of the field, Shannon entropy and mutual
information, which characterise information about a random variable in terms of uncertainty reduction. Intuitive
everyday examples, such as the roll of a die, are used for explaining the main concepts. Biological application
are also discussed.

1 A framework for information

In everyday language, the word information is often used loosely, letting the context clarify its meaning. Colloquial
definitions of information may include:

• “Things that are or can be known about a given topic”, from wikitionary.com;

• “Knowledge communicated or received concerning a particular fact or circumstance” from dictionary.com;

• “advice, clue, data, instruction, intelligence, knowledge, . . . ” from thesaurus.com.

In most scenarios, these definitions work perfectly fine, and there typically isn’t much confusion about what is meant
by information. For scientific purposes, however, a rigorous definition is needed. In mathematics, information is
unambiguously defined as a measure of resolution of uncertainty or, using the language of Information Theory, a
measure of reduction of entropy. Let’s dig in the details.

As a first step, we need to construct a framework, and set some ground rules.

Observers and observable variables

In mathematics, information only makes sense if we can identify 1) an observable variable and 2) an observer
who witnesses the realisation of the variable.

In other words, we can only talk about information if we can answer the questions about what? and to whom?
This might sound pedantic, but that’s because we want to highlight a very important point: information is not a
property of an object, but rather a property of an observation. We are familiar with physical quantities, such as the
energy of a system, its pressure, volume, etc. There is no such a thing as the information of a system! The correct
framework for talking about information is: someone (or something) observes the realisation of a random variable
and, in doing so, acquires a certain amount of information.

Let’s consider a simple example of a person who is watching a die being rolled. The observable variable is the
die, whose outcomes (or realisations) are 1, 2, 3, 4, 5 or 6. The person, of course, is the observer, who is unaware
of the the outcome of the roll until he/she observes it, acquiring information.

A second essential ingredient are probability distributions:

Probability distributions

Information can only be quantified if we know the probabilities associated with the observations.
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From the perspective of the observer, the observable is a so-called random variable: its realisations cover a set of
possible values (the range of the variable) each of which is associated with a probability of occurrence. A random
variable is commonly denoted using uppercase, say X. It is defined over a set of possible values, for which we use
calligraphic typeface, in this case X . The individual realisations (also called outcomes or events) that make up
this set are then denoted using lowercase, so that we may write x ∈ X . We assign a probability p(x) to each such
realisation, which is a number from 0 (no chance of happening) to 1 (certainty of happening). The distribution of
probabilities over X must always be normalised, so that they ‘sum to one’, i.e.∑

x∈X
p(x) = 1. (1)

If X is our die, then the range X = {1, .., 6} corresponds to the six faces. Assuming the die is a fair one, we
have p(x) = 1/6 for all x ∈ X .

2 Information content and Shannon entropy

We now have all the ingredients to define the information content associated to an observation.

Information content

When the probability distribution of a random variable X is known, the information content associated to
each individual realisation x is defined as:

h(x) = log2
1

p(x)
= − log2 p(x). (2)

The information content is proportional to the ‘surprise’ 1/p(x) of observing the outcome — another name for the
information content is the surprisal. Considering again the example of a die, we can see that, since all outcomes
have the same probability, they all carry the same information content:

h(1) = · · · = h(6) = − log2
1

6
≈ 2.585 bits. (3)

However, when the die is biased (suppose p(1)= . . . = p(5)= 0.1 while p(6)= 0.5) then different observations would
carry different information content:

h(1) = · · · = h(5) = − log2 0.1 ≈ 3.322 bits, (4)

h(6) = − log2 0.5 = 1 bit. (5)

The biased die example highlights something very important:

Rare and common events

Rare events carry more information content than common events, i.e., the information content is inversely
proportional the probability.

Figure 1: Information content as
a function of probability.
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This is an obvious property of Eq. (2), but let’s spend a moment on it. A very common event, such as not
winning the lottery, can be predicted with great accuracy without requiring the acquisition of any information,
simply because of its high a priori probability to happen. Events that always happen, such as the sun rising in the
morning, carry no information content at all to us, the observers. On the other hand, rare events (e.g., actually
winning the lottery) are very hard to predict and thus their observation carry a lot of information content.

The example of the biased die also highlights another important idea in information theory: the difference
between information and data.

Data is not information

The amount of symbols (e.g., bits) contained in a message quantifies the data. The amount of data doesn’t
always (almost never, actually) correspond to the amount of information.

Suppose that the outcome of rolling a die is communicated to the observer via a message containing a number
1 to 6. The content of the message, which we call the data, would be of one symbol, regardless of the outcome.
However, as per Eqs. (4) and (5), the information content of the message would be different (i.e., lower for the
outcome 6). In general, the relation between data and information depends on many aspects, including the mech-
anism used for encoding the data (see the Advanced box below) as well as the a priori knowledge of the receiver of
the data. For the moment, it is just important to keep in mind that information and data are two different concepts.

Advanced: Optimal code

It can be shown that the information content of a message can be equal (or close to equal) to the amount
of data if a so called ‘entropy encoding’ method, such as the Huffman code, is used. This is a variable
length encoding in which symbols that are very frequent are encoded by short codes, while rare symbols are
encoded by longer codes (as shorter ones become unavailable). Consider a message which contains only four
symbols, ‘a’, ‘b’, ‘c’ and ‘d’, which appear with the following frequencies:

symbol probability code
a 0.42 0
b 0.37 10
c 0.16 110
d 0.05 111

Table 1: Huffman encoding for a message made of four symbols, given the frequencies of such symbols.

The Huffman code in Table 1 is an example of entropy encoding method, and is close to optimal. Note that
the end of each code is easily identified by either a 0 or a 111 (no need for an extra end-of-symbol code).

The mechanism to construct such encoding is the following:

1. Set each symbol as a leaf of a tree. Build a binary tree by iteratively connecting the two nodes with the
lowest probability. The probability of a new node is the sum of the probabilities of the two children.

2. Label each node starting from the root: Label the left edge with 0 and the right edge with 1 and repeat
for all children.

a

b

c

d

0.42

0.37

0.16

0.05
0.21

0.58

1
0

1

10

11
110

111

Figure 2: Huffman code construction
and reading for the source in Table 1.
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At this point, the reader might have a question: If information content and data aren’t the same, why are they
both measured in bits? This is a very good question indeed, although the answer may be disappointing. The actual
unit of measure of information is not the bit but the Shannon: one Shannon is the information content of an event
that has probability 0.5. However, the name bit is typically (mis)used. The bit is used for data and no assumption
is made on the sequences of symbols in the message being equally likely.

The reader may also be wondering why the information content is the logarithm of the surprise, rather than
simply the surprise. Intuitively, the reason for using the logarithm is that it allows to capture relative variations
of the surprise at any scale. For instance, the information content carried by an observation that has a certain
probability is always exactly 1 bit greater that the information content carried by an observation that has a half
the probability, regardless of how large or small such probabilities are:

h(x) + 1 = h
(x
2

)
. (6)

It is also important to note that

The base is not important

We don’t need to use base 2. In fact, sometimes it is more convenient to use other bases. This means that
information does not need to be measured in bits (or Shannon).

Any base is equally correct! In physics, for example, the natural logarithm (which base is the Euler’s number,
e = 2.71828182 . . . ) is typically used. In this case, the unit of measure of the information content is the nat, which
stands for ‘natural unit of information’. More rarely (mostly in finance), base 10 is used and the unit of measure
takes the name Hart (short for Hartley), also called dit (decimal digit).

Now that we know everything about the information content, we can introduce the main quantity in information
theory: the Shannon entropy.

Shannon entropy

An average information content can be assigned to a whole random variable, given its probability distribution.
This quantity is called the Shannon entropy:

H(X) =
∑
x∈X

p(x)h(x) = −
∑
x∈X

p(x) log2 p(x). (7)

The Shannon entropy (from Claude Shannon, who started the field of information theory in the late 1940s) represents
the uncertainty associated with the entire random variable, rather than a single realisation of it. Think of it this
way: The more oblivious the observer is on average in predicting the realisations of a random variable, the greater
is the Shannon entropy associated to that variable.

Considering again the die example, we can see that the Shannon entropy is the highest when the die if fair, i.e.,
when it is hardest to predict the outcome of the outcome:

H(X) = − log2
1

6
≈ 2.59 bits. (8)

Contrarily, the biased die has a lower Shannon entropy:

H(X) = −0.5 log2 0.5− 5× 0.1 log2 0.1 ≈ 2.16 bits. (9)

It is easy to show that the more biased the coin is, the lower the Shannon entropy. Fig. 3 shows the Shannon
entropy associated to the die at different bias levels, from never 6 (p(6) = 0, p(1) = · · · = p(5) = 0.2) to fair
(p(1) = · · · = p(6) = 1/6), to always 6 (p(6) = 1, p(1) = · · · = p(5) = 0).
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Figure 3: Entropy associated
with a biased die over different
amount of bias.

The Shannon entropy should not to be confused with the thermodynamic entropy, although the two quantities
are intimately related. Thermodynamic entropy is a specific instance of Shannon entropy, applied to physical
systems. More about thermodynamic entropy can be found in the lectures to come.

3 Information channels and mutual information

In the previous section we have introduced the information content and the Shannon entropy using a framework
that involves an observable random variable and an observer. In most circumstances, however, the observer is not
interested in the observable variable itself, but rather in another variable that statistically depends on it. Therefore,
a more common framework is: Someone (or something) observes a realisation of a random variable and in doing so
acquires a certain amount of information about a quantity of interest that is related.

When this is the case, a different information theoretic quantity, called the pointwise mutual information, is
used, which involves not one, but two variables.

Pointwise mutual information

Given two random X and Y , the pointwise mutual information associated to a pair of outcomes (x, y) is:

i(x; y) = h(x) + h(y)− h(x, y)

= log2
p(x, y)

p(x)p(y)
.

(10)

The pointwise mutual information tells us how much information about the outcome of a variable is carried by
observing the outcome of another variable.

Let’s apply it to a simple scenario. Elwood lives in Massachusetts, where it rains 20% of the days. Elwood
loves riding his unicycle, in fact he rides it 90% of the days. The join probability of the two variables X (it rains
in Massachusetts) and Y (Elwood rides his unicycle) is also known:

p(x = 0, y = 0) = 0.01 (11)

p(x = 1, y = 0) = 0.09 (12)

p(x = 0, y = 1) = 0.79 (13)

p(x = 1, y = 1) = 0.11 (14)

Let’s suppose we observe that it is not raining (x = 0) and Elwood is riding his unicycle (y = 1). The pointwise
mutual information would be:

i(x = 0; y = 1) = log2
p(x = 0, y = 1)

p(x = 0)p(y = 1)
= log2

0.79

0.8× 0.9
≈ 0.13 bits. (15)

This means that the observer gets approximately 0.13 bits of information about not raining in Massachusetts from
observing that Elwood is riding his unicycle. Vice versa is also true: the observer gets approximately 0.13 bits of
information about Elwood riding his unicycle from observing that it isn’t raining in Massachusetts. In fact, one
important property of the mutual information is symmetry.
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Just like the Shannon entropy is the average information content over all possible outcomes, the mutual infor-
mation is the average pointwise mutual information.

Mutual information

The mutual information between two random varialbles X and Y is

I(X;Y ) = H(X) +H(Y )−H(X,Y )

=
∑
x∈X

∑
y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)
.

(16)

I(X;Y) H(Y)H(X)

H(X,Y)

Figure 4: Venn diagram repre-
sentation of the mutual informa-
tion.

The mutual information between two variables is the amount of information about one variable that is on average
obtained by observing the other1. One intuitive representation of the mutual information uses Venn diagrams (see
Fig. 4): The two circles represent the uncertainty associated with the two variables X and Y , while the union of the
two circles represents the joint Shannon entropy (the uncertainty associated with the two variables taken together).
The intersection is the mutual information. Observing Y (i.e., removing the blue circle representing the uncertainty
about Y ) decreases the uncertainty about X (the red circle) by an amount that is the mutual information (the
intersection). This diagram is useful for understanding a few properties of the mutual information. First, just like its
pointwise version, the mutual information is symmetric: observing X instead of Y would decrease the uncertainty
about Y by the same amount. Second, when the two variables X and Y are completely independent (i.e., there
is no overlapping between the two circles) the mutual information is zero. This mean that no information about
one variable is obtained by observing the other. Last, the maximum mutual information between X and Y is equal
to the smallest of the Shannon entropies. This would happen, for example, if H(Y ) contained H(X) entirely: the
knowledge of Y would completely determine X.

Let’s go back to Elwood and his unicycle. According to Eq. (16), the mutual information is

I(X,Y ) = 0.01 log2
0.01

0.8× 0.1
+ 0.09 log2

0.09

0.2× 0.1
+ 0.79 log2

0.79

0.8× 0.9
+ 0.11 log2

0.11

0.2× 0.9
≈ 0.1929 bits. (17)

This means that the weather in Massachusetts and Elwood’s unicycling schedule are not statistically independent
variables. Therefore, observing one of the two events provides us with some information about the other. On
average, this information is around 0.1929 bits.

1The more advanced reader will notice that the mutual information is the Kullback–Leibler divergence between the joint distribution
and the product of the marginals. Indeed, the mutual information can be interpreted as a measure of how different these two probability
distributions are.
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At this point, it should be understood that

Mutual information measures statistical dependence

The mutual information is a useful tool to estimate the statistical dependence between variables. The two
most desired features of the mutual information compared to other measures of statistical dependence are
that it is non-parametric and model-free.

The reader may wonder why we need the mutual information, since there are already many kinds of correlation
(Pearson, Spearman, etc.). The reason is that these correlations do not test any statistical dependence between the
variables, instead, they only test specific types of correlation (e.g., linear ones for Person correlation). In contrast,
the mutual information does not make any assumption and fully captures statistical dependence. So, next time you
need to check if there’s a relation between two variables, do keep the mutual information in mind!

Here is an example of how to calculate the mutual information between two variables from experiments. For
simplicity, we again consider dice: Two dice X and Y that somehow (the actual mechanism is not important here)
stochastically depend on each other are observed thousands of times and the outcomes are summarised in Table 2.

Y\X 1 2 3 4 5 6
1 651 7 2 0 18 101
2 15 344 25 17 864 22
3 1 12 213 789 6 1
4 0 1 32 28 0 0
5 0 0 2 1 0 0
6 0 0 0 0 0 0

Table 2: Occurrences of two statistically dependent dice, experimentally observed.

Notice that there is a clear dependence between the two dice as, for example, small outcomes of Y (i.e., 1 and
2) are mostly observed for either small or large outcomes of X (i.e., 1, 2, 5 and 6) but not for middle outcomes of
X (i.e., 3 and 4). This dependence is clearly non-linear and therefore methods that assume a linear dependence,
such as the Pearson correlation, would not perform well. At the contrary, the mutual information can capture the
statistical dependence between the two dice. In order to compute the mutual information, we first need to estimate
from the experiment the probabilities p(X), p(Y ) and p(X,Y ). This can be easily from Table 2 and the result is
summarised in Table 3.

p(Y)\p(X) 1 2 3 4 5 6
1 0.2065 0.0022 0.0006 0 0.0057 0.0320
2 0.0048 0.1091 0.0079 0.0054 0.2741 0.0070
3 0.0003 0.0038 0.0676 0.2503 0.0019 0.0003
4 0 0 0.0006 0.0003 0 0
5 0 0 2 1 0 0
6 0 0 0 0 0 0

p(X) p(Y)
1 0.2116 0.2471
2 0.1155 0.4083
3 0.0869 0.3242
4 0.2649 0.0194
5 0.2817 0.0010
6 0.0393 0

Table 3: Probabilities estimated from the experiment.

Applying Eq. 16 using the probabilities in Table 3 we obtain a mutual information I(X;Y ) ≈ 1.318 bits.
More in general, the mutual information is often used in the context of communication channels.

Mutual information and communication channels

Let’s consider two interacting systems, whose statistical behaviour is modelled using two random variables.
The mutual information between these two variables quantifies the minimum capacity of a communication
channel between the two systems that can explain the observed interaction.

Consider two systems that interact with each other. These can be anything, e.g., two computers in a network,
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two animals crossing the same spot, two cells in your body, etc. We can imagine a channel between the two
systems through which information needed for their interaction is communicated. Two important things need to
be emphasized. First, this channel needs not to be an actual connection (e.g., a wire or bluetooth), instead, it can
be an abstract medium relating the signals from a systems to the response of the other. In fact, the communication
channel abstraction is typically used when two systems interact via an unknown mechanism, whose functioning
we don’t fully understand, although we do have empirical understanding of the relationship between the systems’
signals and responses. Second, a very important, we are not focussing on the data (of whatever sort) that is
crossing the channel, we are interested in information as reduction of uncertainty about the behaviour of a system
given the behaviour of the other. In this setup, the mutual information takes the role of the channel capacity:
Whatever interaction mechanism is between the two system, it needs to be complex enough to resolve a minimum
amount of uncertainty given by the mutual information, otherwise the dependence between the two system cannot
be explained.

A recent approach to understanding interactions between cells or cells’ components uses the communication
channel approach. You can check the details of all individual studies, but here is a schematic example that capture
their essence:

Environment

Cell

Response:
- protein expression
- move cytoskeleton
- enzyme catalysis
- etc.

Signal:
- other cells’ ligands
- solution concentration
- mechanical stress
- etc.

Information
channel

Figure 5: Cartoon of an information channel between a cell and its environment.

It is well known that the internal behaviour of a cell depends on its surrounding. For example, a cell can express
some proteins instead of others depending on the concentration of the solutions it is submerged within, or it can
remodel its cytoskeleton after sensing other cells or in response of mechanical stresses (see Fig. 5). The mechanisms
thought which information is passed from the environment to the inside of a cell are typically complicated, involving
complex sequences of chemical reactions. Many of these mechanisms are not fully understood yet and are currently
being investigated. However, the question of how much information is conveyed between a cell and its surroundings
is one that can in principle be answered using information theory. In fact, this is the equivalent of asking what is
the capacity of the information channel between the cell and the environment.

If we know the probability distribution of a signal (e.g., the rate of binding with some ligands), the probability
distribution of a response (e.g., the rate of a protein expression) and the joint distribution of signal and response
(e.g., the probability of the cell binding with the ligand end expressing the protein), then we can ask the question
“What it the maximum mutual information between the response and the signal?” or equivalently “What is the
capacity of the communication channel between the response and the signal?”.
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